Molecular cloning and characterization of the human cardiac Na+/Ca2+ exchanger cDNA.

نویسندگان

  • I Komuro
  • K E Wenninger
  • K D Philipson
  • S Izumo
چکیده

The Na+/Ca2+ exchanger plays important roles in Ca2+ handling in many excitable cells. In particular, the Na+/Ca2+ exchanger is expressed at high levels in the cardiac sarcolemma and is the dominant mechanism of Ca2+ extrusion from the cells. In addition, the exchanger has been suggested to play key roles in digitalis action and in postischemic reperfusion injury of cardiac myocytes. We report here the isolation and characterization of the cDNA encoding the human cardiac Na+/Ca2+ exchanger. Twelve overlapping clones corresponding to 5.6 kilobases of the exchanger cDNA sequence were isolated from 5 x 10(5) phage plaques screened. The sequence predicted a 973-amino acid polypeptide with a putative leader peptide, 11 potential membrane-spanning regions, and one large putative cytoplasmic loop between the fifth and sixth transmembrane helices. When RNA was synthesized in vitro from the cloned cDNA and injected into Xenopus oocytes, it induced expression of Na+/Ca2+ exchange activity at high levels, confirming that this clone encodes the functional Na+/Ca2+ exchanger. Southern blot analysis indicated that the cardiac exchanger gene exists as a single copy in the human genome, although existence of other related genes cannot be ruled out. Northern blot and S1 mapping analyses revealed that the cardiac type exchanger mRNA is expressed most abundantly in the heart and next in the brain. The cardiac-type exchanger mRNA was also expressed in the retina and in skeletal and smooth muscles at very low levels. The levels of mRNA encoding the exchanger were significantly lower in fetal hearts than in adult hearts but were unchanged in the myocardium from patients with end-stage heart failure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene expression of the cardiac Na(+)-Ca2+ exchanger in end-stage human heart failure.

The regulation of cytosolic Ca2+ concentration during excitation-contraction coupling is altered in the failing human heart. Previous studies have focused on disturbances in Ca2+ release and reuptake from the sarcoplasmic reticulum (SR), whereas functional studies of the cardiac Na(+)-Ca2+ exchanger, another important determinant of myocyte homeostasis, are lacking for the failing human heart. ...

متن کامل

Functional expression of the human cardiac Na+/Ca2+ exchanger in Sf9 cells: rapid and specific Ni2+ transport.

Although inhibition of the Na+/Ca2+ exchanger normally increases [Ca2+]i in neonatal cardiac myocytes, application of the inhibitor Ni2+ appears to reduce [Ca2+] measured by fluo-3. To investigate how the apparent reduction in [Ca2+]i occurs we examined Ca2+ transport by the human Na+/Ca2+ exchanger expressed in Sf9 cells. Transport of Ca2+ by the Na+/Ca2+ exchanger was examined using a laser-s...

متن کامل

Developing Rabbit and Rat Hearts

To functionally compensate for an underdeveloped sarcoplasmic reticulum in immature cardiomyocytes, it has been proposed that the sarcolemmal Na+-Ca2' exchanger may assume a more predominant role for regulating cytosolic Ca2`. Previous studies using sarcolemma prepared from developing rabbit hearts demonstrated that Na+-dependent Ca2` uptake and exchanger protein content were highest at birth a...

متن کامل

Molecular cloning and functional expression of the potassium-dependent sodium-calcium exchanger from human and chicken retinal cone photoreceptors.

Light causes a rapid lowering of cytosolic free calcium in the outer segments of both retinal rod and cone photoreceptors. This light-induced lowering of calcium is caused by extrusion via a Na-Ca exchanger located in the rod and cone outer segment plasma membrane and plays a key role in the process of light adaptation. The Na-Ca exchanger in retinal rod outer segment was shown earlier to be a ...

متن کامل

Cloning and Expression of Human Gamma-Interferon cDNA in E. coli

Prior to the production of human gamma interferon using recombinant DNA technology, it had been producedmainly upon mitogenic induction of lymphocytes in very low amounts, which evidently hamperedits characterization and its medical applications. The recombinant gamma interferons produced in largerquantities in prokaryotic systems retain their biological activities, and can be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 89 10  شماره 

صفحات  -

تاریخ انتشار 1992